If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2+90x=0
a = 6; b = 90; c = 0;
Δ = b2-4ac
Δ = 902-4·6·0
Δ = 8100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{8100}=90$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(90)-90}{2*6}=\frac{-180}{12} =-15 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(90)+90}{2*6}=\frac{0}{12} =0 $
| 5+5x=750 | | 7x+30=100+2x | | 23=71/(x^2) | | 10d+4=2d-28 | | 10x-(3x-7)=28 | | 1/2x-5=x/4+3 | | 4(r-93)=24 | | 2(x-5)+4=2(2x+6) | | 90=5(d-70) | | 7x+35=9x-3 | | 16x-7=38 | | K+y3=51/8 | | (9x-11)+(10x-37)=123 | | 45b+28=9b | | (5p+2)=^2 | | 7x-1=x+7 | | 15-6x=5x+3 | | 7k+1=3k+9 | | 9a−3=15+3a | | 9m-15=47 | | 10y-1=5y+4 | | 187=t-704+59 | | 23=(x)/(1,76)^2 | | 4(3e+2)=32 | | 23=x/(1,76)^2 | | x+2x+30.5=180 | | 4w+2-w+6=4+2w | | (x+5)+(x+5)=19 | | 1246=510x-1,022,324 | | 4(3x-2)=113 | | 7+(7x+-2)=24 | | 74x+17=9 |